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The generalized likelihood ratio (GLR) test proposed by Fan,
Zhang and Zhang [Ann. Statist. 29 (2001) 153–193] and Fan and
Yao [Nonlinear Time Series: Nonparametric and Parametric Methods

(2003) Springer] is a generally applicable nonparametric inference
procedure. In this paper, we show that although it inherits many
advantages of the parametric maximum likelihood ratio (LR) test,
the GLR test does not have the optimal power property. We propose
a generally applicable test based on loss functions, which measure
discrepancies between the null and nonparametric alternative models
and are more relevant to decision-making under uncertainty. The new
test is asymptotically more powerful than the GLR test in terms of
Pitman’s efficiency criterion. This efficiency gain holds no matter
what smoothing parameter and kernel function are used and even
when the true likelihood function is available for the GLR test.

1. Introduction. The likelihood ratio (LR) principle is a generally appli-
cable approach to parametric hypothesis testing [e.g., Vuong (1989)]. The
maximum LR test compares the best explanation of data under the alter-
native with the best explanation under the null hypothesis. It is well known
from the Neyman–Pearson lemma that the maximum LR test has asymp-
totically optimal power. Moreover, the LR statistic follows an asymptotic
null χ2 distribution with a known number of degrees of freedom, enjoying
the so-called Wilks phenomena that its asymptotic distribution is free of
nuisance parameters.

In parametric hypothesis testing, however, it is implicitly assumed that
the family of alternative likelihood models contains the true model. When
this is not the case, one may fail to reject the null hypothesis erroneously.
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In many testing problems in practice, while the null hypothesis is well for-
mulated, the alternative is vague. Over the last two decades or so, there
has been a growing interest in nonparametric inference, namely, inference
for hypotheses on parametric, semiparametric and nonparametric models
against a nonparametric alternative. The nonparametric alternative is very
useful when there is no prior information about the true model. Because
the nonparametric alternative contains the true model at least for large
samples, it ensures the consistency of a test. Nevertheless, there have been
few generally applicable nonparametric inference principles. One naive ex-
tension would be to develop a nonparametric maximum LR test similar to
the parametric maximum LR test. However, the nonparametric maximum
likelihood estimator (MLE) usually does not exist, due to the well-known
infinite dimensional parameter problem [Bahadur (1958), Le Cam (1990)].
Even if it exists, it may be difficult to compute, and the resulting nonpara-
metric maximum LR test is not asymptotically optimal. This is because the
nonparametric MLE chooses the smoothing parameter automatically, which
limits the choice of the smoothing parameter and renders it impossible for
the test to be optimal.

Fan, Zhang and Zhang (2001) and Fan and Yao (2003) proposed a gen-
eralized likelihood ratio (GLR) test by replacing the nonparametric MLE
with a reasonable nonparametric estimator, attenuating the difficulty of the
nonparametric maximum LR test and enhancing the flexibility of the test
by allowing for a range of smoothing parameters. The GLR test maintains
the intuitive feature of the parametric LR test because it is based on the
likelihoods of generating the observed sample under the null and alterna-
tive hypotheses. It is generally applicable to various hypotheses involving
a parametric, semiparametric or nonparametric null model against a non-
parametric alternative. By a proper choice of the smoothing parameter, the
GLR test can achieve the asymptotically optimal rate of convergence in
the sense of Ingster (1993a, 1993b, 1993c) and Lepski and Spokoiny (1999).
Moreover, it enjoys the appealing Wilks phenomena that its asymptotic null
distribution is free of nuisance parameters and nuisance functions.

The GLR test is a nonparametric inference procedure based on the empir-
ical Kullback–Leibler information criterion (KLIC) between the null model
and a nonparametric alternative model. This measure can capture any dis-
crepancy between the null and alternative models, ensuring the consistency
of the GLR test. As Fan, Zhang and Zhang (2001) and Fan and Jiang (2007)
point out, it holds an advantage over many discrepancy measures such as the
L2 and L∞ measures commonly used in the literature because for the latter
the choices of measures and weight functions are often arbitrary, and the
null distributions of the test statistics are unknown and generally depend on
nuisance parameters. We note that Robinson (1991) developed a nonpara-
metric KLIC test for serial independence and White [(1982), page 17] also
suggested a nonparametric KLIC test for parametric likelihood models.



LOSS FUNCTION APPROACH 3

The GLR test assumes that stochastic errors follows some parametric
distribution which need not contain the true distribution. It is essentially a
nonparametric pseudo LR test. Azzalini, Bowman and Härdle (1989), Azza-
lini and Bowman (1990) and Cai, Fan and Yao (2000) also proposed a non-
parametric pseudo-LR test for the validity of parametric regression models.

In this paper, we show that despite its general nature and appealing fea-
tures, the GLR test does not have the optimal power property of the classi-
cal LR test. We first propose a generally applicable nonparametric inference
procedure based on loss functions and show that it is asymptotically more
powerful than the GLR test in terms of Pitman’s efficiency criterion. Loss
functions are often used in estimation, model selection and prediction [e.g.,
Zellner (1986), Phillips (1996), Weiss (1996), Christoffersen and Diebold
(1997), Giacomini and White (2006)], but not in testing. A loss function
compares the models under the null and alternative hypotheses by speci-
fying a penalty for the discrepancy between the two models. The use of a
loss function is often more relevant to decision-making under uncertainty
because one can choose a loss function to mimic the objective of the deci-
sion maker. In inflation forecasting, for example, central banks may have
asymmetric preferences which affect their optimal policies [Peel and Nobay
(1998)]. They may be more concerned with underprediction than overpre-
diction of inflation rates. In financial risk management, regulators may be
more concerned with the left-tailed distribution of portfolio returns than
the rest of the distribution. In these circumstances, it is more appropriate
to choose an asymmetric loss function to validate an inflation rate model
and an asset return distribution model. The admissible class of loss func-
tions for our approach is large, including quadratic, truncated quadratic and
asymmetric linex loss functions [Varian (1975), Zellner (1986)]. They do not
require any knowledge of the true likelihood, do not involve any choice of
weights, and enjoy the Wilks phenomena that its asymptotic distribution
is free of nuisance parameters and nuisance functions. Most importantly,
the loss function test is asymptotically more powerful than the GLR test in
terms of Pitman’s efficiency criterion, regardless of the choice of the smooth-
ing parameter and the kernel function. This efficiency gain holds even when
the true likelihood function is available for the GLR test. Interestingly, all
admissible loss functions are asymptotically equally efficient under a general
class of local alternatives.

The paper is planned as follows. Section 2 introduces the framework and
the GLR principle. Section 3 proposes a class of loss function-based tests.
For concreteness, we focus on specification testing for time series regression
models, although our approach is applicable to other nonparametric testing
problems. Section 4 derives the asymptotic distributions of the loss function
test and the GLR test. Section 5 compares their relative efficiency under
a class of local alternatives. In Section 6, a simulation study compares the
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performance between two competing tests in finite samples. Section 7 con-
cludes the paper. All mathematical proofs are collected in an Appendix and
supplementary material [Hong and Lee (2013)].

2. Generalized likelihood ratio test. Maximum LR tests are a gener-
ally applicable and powerful inference method for most parametric testing
problems. However, the classical LR principle implicitly assumes that the
alternative model contains the true data generating process (DGP). This
is not always the case in practice. To ensure that the alternative model
contains the true DGP, one can use a nonparametric alternative model.

Recognizing the fact that the nonparametric MLE may not exist and so
cannot be a generally applicable method, Fan, Zhang and Zhang (2001) and
Fan and Yao (2003) proposed the GLR principle as a generally applicable
method for nonparametric inference. The idea is to compare a suitable non-
parametric estimator with a restricted estimator under the null hypothesis
via a LR statistic. Specifically, suppose one is interested in whether a para-
metric likelihood model fθ is correctly specified for the unknown density f
of the DGP, where θ is a finite-dimensional parameter. The null hypothesis
of interest is

H0 :f = fθ0 for some θ0 ∈Θ,(2.1)

where Θ is a parameter space. The alternative hypothesis is

HA :f 6= fθ for all θ ∈Θ.(2.2)

In testing H0 versus HA, a nonparametric model for f can be used as
an alternative, as also suggested in White [(1982), page 17]. Suppose the

log-likelihood function of a random sample is l̂(f, η), where η is a nuisance

parameter. Under H0, one can obtain the MLE (θ̂0, η̂0) by maximizing the

model likelihood l̂(fθ, η). Under the alternative HA, given η, one can obtain

a reasonable smoothed nonparametric estimator f̂η of f . The nuisance pa-
rameter η can then be estimated by the profile likelihood; that is, to find η
to maximize l(f̂η, η). This gives the maximum profile likelihood l(f̂η̂, η̂). The
GLR test statistic is then defined as

λn = l(f̂η̂, η̂)− l(fθ̂0 , η̂0).(2.3)

This is the difference of the log-likelihoods of generating the observed sample
under the alternative and null models. A large value of λn is evidence against
H0 since the alternative family of nonparametric models is far more likely
to generate the observed data.

The GLR test does not require knowing the true likelihood. This is appeal-
ing since nonparametric testing problems do not assume that the underlying
distribution is known. For example, in a regression setting one usually does
not know the error distribution. Here, one can estimate model parameters
by using a quasi-likelihood function q(fθ, η). The resulting GLR test statistic
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is then defined as

λn = q(f̂η̂, η̂)− q(fθ̂0,η̂0).(2.4)

The GLR approach is also applicable to the cases with unknown nuisance
functions. This can arise (e.g.) when one is interested in testing whether
a function has an additive form which itself is still nonparametric. In this
case, one can replace fθ̂0 by a nonparametric estimator under the null hy-

pothesis of additivity. Robinson (1991) considers such a case in testing serial
independence.

As a generally applicable nonparametric inference procedure, the GLR
principle has been used to test a variety of models, including univariate
regression models [Fan, Zhang and Zhang (2001)], functional coefficient re-
gression models [Cai, Fan and Yao (2000)], spectral density models [Fan and
Zhang (2004)], varying-coefficient partly linear regression models [Fan and
Huang (2005)], additive models [Fan and Jiang (2005)], diffusion models [Fan
and Zhang (2003)] and partly linear additive models [Fan and Yao (2003)].
Analogous to the classical LR test statistic which follows an asymptotic null
χ2 distribution with a known number of degrees of freedom, the asymptotic
distribution of the GLR statistic λn is also a χ2 with a known large number
of degrees of freedom, in the sense that

rλn ≃ χ2
µn

as a sequence of constants µn →∞ and some constant r > 0; namely,

rλn − µn√
2µn

d→N(0,1),

where µn and r are free of nuisance parameters and nuisance functions,
although they may depend on the methods of nonparametric estimation
and smoothing parameters. Therefore, the asymptotic distribution of λn
is free of nuisance parameters and nuisance functions. One can use λn to
make inference based on the known distribution of N(µn,2µn) or χ2

µn
in

large samples. Alternatively, one can simulate the null distribution of λn by
setting nuisance parameters at any reasonable values, such as the MLE η̂0
or the maximum profile likelihood estimator η̂ in (2.3).

The GLR test is powerful under a class of contiguous local alternatives,

Han :f = fθ0 + n−γgn,

where γ > 0 is a constant and gn is an unspecified sequence of smooth func-
tions in a large class of function space. It has been shown [Fan, Zhang and
Zhang (2001)] that when a local linear smoother is used to estimate f and the
bandwidth is of order n−2/9, the GLR test can detect local alternatives with
rate γ = 4/9, which is optimal according to Ingster (1993a, 1993b, 1993c).

3. A loss function approach. In this paper, we will show that while the
GLR test enjoys many appealing features of the classical LR test, it does not
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have the optimal power property of the classical LR test. We will propose a
class of loss function-based tests and show that they are asymptotically more
powerful than the GLR test under a class of local alternatives. Loss functions
measure discrepancies between the null and alternative models and are more
relevant to decision making under uncertainty, because the loss function can
be chosen to mimic the objective function of the decision maker. The ad-
missible loss functions include but are not restricted to quadratic, truncated
quadratic and asymmetric linex loss functions. Like the GLR test, our tests
are generally applicable to various nonparametric inference problems, do not
involve choosing any weight function and their null asymptotic distributions
do not depend on nuisance parameters and nuisance functions.

For concreteness, we focus on specification testing for time series regres-
sion models. Regression modeling is one of the most important statisti-
cal problems, and has been exhaustively studied, particularly in the i.i.d.
contexts [e.g., Härdle and Mammen (1993)]. Focusing on testing regression
models will provide deep insight into our approach and allow us to provide
primitive regularity conditions for formal results. Extension to time series
contexts also allows us to expand the scope of applicability of our tests and
the GLR test. We emphasize that our approach is applicable to many other
nonparametric test problems, such as testing parametric density models.

Suppose {Xt, Yt} ∈ R
p+1 is a stationary time series with finite second

moments, where Yt is a scalar, p ∈ N is the dimension of vector Xt and Xt

may contain exogenous and/or lagged dependent variables. Then we can
write

Yt = g0(Xt) + εt,(3.1)

where g0(Xt) =E(Yt|Xt) and E(εt|Xt) = 0. The fact that E(εt|Xt) = 0 does
not imply that {εt} is a martingale difference sequence. In a time series
context, εt is often assumed to be i.i.d. (0, σ2) and independent of Xt [e.g.,
Gao and Gijbels (2008)]. This implies E(εt|Xt) = 0 but not vice versa, and
so it is overly restrictive from a practical point of view. For example, εt may
display volatility clustering [e.g., Engle (1982)],

εt = zt
√
ht,

where ht = α0+α1ε
2
t−1. Here, we have E(εt|Xt) = 0 but {εt} is not i.i.d. We

will allow such an important feature, which is an empirical stylized fact for
high-frequency financial time series.

In practice, a parametric model is often used to approximate the unknown
function g0(Xt). We are interested in testing validity of a parametric model
g(Xt, θ), where g(·, ·) has a known functional form, and θ ∈Θ is an unknown
finite dimensional parameter. The null hypothesis is

H0 :Pr[g0(Xt) = g(Xt, θ0)] = 1 for some θ0 ∈Θ
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versus the alternative hypothesis

HA :Pr[g0(Xt) 6= g(Xt, θ)]< 1 for all θ ∈Θ.

An important example is a linear time series model

g(Xt, θ) =X ′
tθ.

This is called linearity testing in the time series literature [Granger and
Teräsvirta (1993)]. Under HA, there exists neglected nonlinearity in the con-
ditional mean. For discussion on testing linearity in a time series context,
see Granger and Teräsvirta (1993), Lee, White and Granger (1993), Hansen
(1999), Hjellvik and Tjøstheim (1996) and Hong and Lee (2005).

Because there are many possibilities for departures from a specific func-
tional form, and practitioners usually have no information about the true
alternative, it is desirable to construct a test of H0 against a nonparametric
alternative, which contains the true function g0(·) and thus ensures the con-
sistency of the test against HA. For this reason, the GLR test is attractive.

Suppose we have a random sample {Yt,Xt}nt=1 of size n ∈ N. Assum-
ing that the error εt is i.i.d. N(0, σ2), we obtain the conditional quasi-log-
likelihood function of Yt given Xt as follows:

l̂(g,σ2) =−n
2
ln(2πσ2)− 1

2σ2

n∑

t=1

[Yt − g(Xt)]
2.(3.2)

Let ĝ(x) be a consistent local smoother for g0(x). Examples of ĝ(x) in-
clude the Nadaraya–Watson estimator [Härdle (1990), Li and Racine (2007),
Pagan and Ullah (1999)] and local linear estimator [Fan and Yao (2003)].
Substituting ĝ(Xt) into (3.2), one obtains the likelihood of generating the
observed sample {Yt,Xt}nt=1 under HA,

l̂(ĝ, σ2) =−n
2
ln(2πσ2)− 1

2σ2
SSR1,(3.3)

where SSR1 is the sum of squared residuals of the nonparametric model;
namely,

SSR1 =

n∑

t=1

[Yt − ĝ(Xt)]
2.

Maximizing the likelihood in (3.3) with respect to nuisance parameter σ2

yields σ̂2 = n−1 SSR1. Substituting this estimator in (3.3) yields the following
likelihood:

l̂(ĝ, σ̂2) =−n
2
ln(SSR1)−

n

2
[1 + ln(2π/n)].(3.4)

Using a similar argument and maximizing the model quasi-likelihood func-
tion with respect to θ and σ2 simultaneously, we can obtain the parametric
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maximum quasi-likelihood under H0,

l̂(ĝθ̂0 , σ̂
2
0) =−n

2
lnSSR0−

n

2
ln[1 + ln(2π/n)],(3.5)

where (θ̂0, σ̂
2
0) are the MLE under H0, and SSR0 is the sum of squared

residuals of the parametric regression model, namely,

SSR0 =

n∑

t=1

[Yt − g0(Xt, θ̂0)]
2.

Given the i.i.d. N(0, σ2) assumption for εt, θ̂0 is the least squares estimator
that minimizes SSR0.

Thus, the GLR statistic is defined as

λn = l̂(ĝ, σ̂2)− l̂(ĝθ̂0 , σ̂
2
0) =

n

2
ln(SSR0 /SSR1).(3.6)

Under the i.i.d.N(0, σ2) assumption for εt, λn is asymptotically equivalent
to the F test statistic

F =
SSR0−SSR1

SSR1
.(3.7)

The latter has been proposed by Azzalini, Bowman and Härdle (1989), Az-
zalini and Bowman (1993), Hong and White (1995) and Fan and Li (2002)
in i.i.d. contexts. The asymptotic equivalence between the GLR and F tests
can be seen from a Taylor series expansion of λn,

λn =
n

2
· F +Remainder.

We now propose an alternative approach to testing H0 versus HA by com-
paring the null and alternative models via a loss function D :R2 →R, which
measures the discrepancy between the fitted values ĝ(Xt) and g(Xt, θ̂0),

Qn =
n∑

t=1

D[ĝ(Xt), g0(Xt, θ̂0)].(3.8)

Intuitively, the loss function gives a penalty whenever the parametric model
overestimates or underestimates the true model. The latter is consistently
estimated by a nonparametric method.

A specific class of loss functions D(·, ·) is given by D(u, v) = d(u − v),
where d(z) has a unique minimum at 0, and is monotonically nondecreasing
as |z| increases. Suppose d(·) is twice continuously differentiable at 0 with
d(0) = 0, d′(0) = 0 and 0< d′′(0)<∞. The condition of d′(0) = 0 implies that
the first-order term in the Taylor expansion of d(·) around 0 vanishes to 0
identically. This class of loss functions d(·) has been called a generalized
cost-of-error function in the literature [e.g., Pesaran and Skouras (2001),
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Granger (1999), Christoffersen and Diebold (1997), Granger and Pesaran
(2000), Weiss (1996)]. The loss function is closely related to decision-based
evaluation, which assesses the economic value of forecasts to a particular
decision maker or group of decision makers. For example, in risk manage-
ment the extreme values of portfolio returns are of particular interest to
regulators, while in macroeconomic management the values of inflation or
output growth, in the middle of the distribution, may be of concern to cen-
tral banks. A suitable choice of loss function can mimic the objective of the
decision maker.

Infinitely many loss functions d(·) satisfy the aforementioned conditions,
although they may have quite different shapes. To illustrate the scope of
this class of loss functions, we consider some examples. The first example of
d(·) is the popular quadratic loss function

d(z) = z2.(3.9)

This delivers a statistic based on the sum of squared differences between the
fitted values of the null and alternative models,

L̂2
n =

n∑

t=1

[ĝ(Xt)− g0(Xt, θ̂0)]
2.(3.10)

This statistic is used in Hong and White (1995) and Horowitz and Spokoiny
(2001) in an i.i.d. setup. It is also closely related to the statistics proposed by
Härdle and Mammen (1993) and Pan, Wang and Yao (2007) but different

from their statistics, L̂2
n in (3.10) does not involve any weighting which

suffers from the undesirable feature as pointed out in Fan and Jiang (2007).
A second example of d(·) is the truncated quadratic loss function

d(z) =

{
1
2z

2, if |z| ≤ c,

c|z| − 1
2c

2, if |z|> c,
(3.11)

where c is a prespecified constant. This loss function is used in robust M -
estimation. It is expected to deliver a test robust to outliers that may cause
extreme discrepancies between two estimators.

The quadratic and truncated quadratic loss functions give equal penalty
to overestimation and underestimation of same magnitude. They cannot
capture asymmetric loss features that may arise in practice. For example,
central banks may be more concerned with underprediction than overpre-
diction of inflation rates. For another example, in providing an estimate of
the market value of a property of the owner, a real estate agent’s underesti-
mation and overestimation may have different consequences. If the valuation
is in preparation for a future sale, underestimation may lead to the owner
losing money and overestimation to market resistance [Varian (1975)].
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The above examples motivate using an asymmetric loss function for model
validation. Examples of asymmetric loss functions are a class of so-called
linex functions

d(z) =
β

α2
[exp(αz)− (1 +αz)].(3.12)

For each pair of parameters (α,β), d(z) is an asymmetric loss function.
Here, β is a scale factor, and α is a shape parameter. The magnitude of α
controls the degree of asymmetry, and the sign of α reflects the direction
of asymmetry. When α < 0, d(z) increases almost exponentially if z < 0,
and almost linearly if z > 0, and conversely when α > 0. Thus, for this loss
function, underestimation is more costly than overestimation when α < 0,
and the reverse is true when α > 0. For small values of |α|, d(z) is almost
symmetric and not far from a quadratic loss function. Indeed, if α→ 0, the
linex loss function becomes a quadratic loss function

d(z)→ β

2
z2.

However, when |α| assumes appreciable values, the linex loss function d(z)
will be quite different from a quadratic loss function. Thus, the linex loss
function can be viewed as a generalization of the quadratic loss function
allowing for asymmetry. This function was first introduced by Varian (1975)
for real estate assessment. Zellner (1986) employs it in the analysis of several
central statistical estimation and prediction problems in a Bayesian frame-
work. Granger and Pesaran (1999) also use it to evaluate density forecasts,
and Christoffersen and Diebold (1997) analyze the optimal prediction prob-
lem under this loss function. Figure 1 shows the shapes of the linex function
for a variety of choices of (α,β).

Our loss function approach is by no means only applicable to regression
functions. For example, in such contexts as probability density and spectral

density estimation, one may compare two nonnegative density estimators,
say fθ̂ and f̂ , using the Hellinger loss function

D(fθ̂, f̂) = (1−
√
fθ̂/f̂)

2.(3.13)

This is expected to deliver a consistent robust test for H0 of (2.1). Our

approach covers this loss function as well, because when fθ̂ and f̂ are close
under H0 of (2.1), we have

D(fθ̂, f̂) =
1

4

(
fθ̂ − f̂

f̂

)2

+Remainder,

where the first-order term in the Taylor expansion vanishes to 0 identically.
Interestingly, our approach does not apply to the KLIC loss function

D(fθ̂, f̂) =− ln(fθ̂/f̂),(3.14)
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Fig. 1. The LINEX loss function d(z) = β
α2 [exp(αz)− (1 + αz)].

which delivers the GLR λn in (2.3). This is because the Taylor expansion of
(3.14) yields

D(fθ̂, f̂) =−
(
fθ̂ − f̂

f̂

)
+

1

2

(
fθ̂ − f̂

f̂

)2

+Remainder,(3.15)
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where the first-order term in the Taylor expansion does not vanish to 0 iden-
tically. Hence, the first two terms in (3.15) jointly determine the asymptotic
distribution of the GLR statistic λn. As will be seen below, the presence of
the first-order term in the Taylor expansion of the KLIC loss function in
(3.14) leads to an efficiency loss compared to our loss function approach for
which the first-order term of a Taylor expansion is identically 0 under the
null.

4. Asymptotic null distribution. Using a local fit with kernel K :R→R

and bandwidth h≡ h(n), one could obtain a nonparametric regression esti-

mator ĝ(·) and compare it to the parametric model g(·, θ̂0) via a loss function,
where θ̂0 is a consistent estimator for θ0 under H0. To avoid undersmooth-
ing [i.e., to choose h such that the squared bias of ĝ(·) vanishes to 0 faster
than the variance of ĝ(·)], we estimate the conditional mean of the estimated
parametric residual

ε̂t = Yt − g(Xt, θ̂0),

and compare it to a zero function E(εt|Xt) = 0 (implied by H0) via a loss
function criterion

Q̂n =
n∑

t=1

D[m̂h(Xt),0] =
n∑

t=1

d[m̂h(Xt)− 0] =
n∑

t=1

d[m̂h(Xt)],(4.1)

where m̂h(Xt) is a nonparametric estimator for E(εt|Xt). This is essentially
a bias-reduction device. It is proposed in Härdle and Mammen (1993) and
also used in Fan and Jiang (2007) for the GLR test. This device helps remove
the bias of nonparametric estimation because there is no bias under H0 when
we estimate the conditional mean of the estimated model residuals. We note
that the bias-reduction device does not lead to any efficiency gain of the loss
function test. The same efficiency gain of the loss function approach over the
GLR approach is obtained even when we compare estimators for E(Yt|Xt).
In the latter case, however, more restrictive conditions on the bandwidth h
are required to ensure that the bias vanishes sufficiently fast under H0.

For simplicity, we use the Nadaraya–Watson estimator

m̂h(x) =
n−1

∑n
t=1 ε̂tKh(x−Xt)

n−1
∑n

t=1Kh(x−Xt)
,(4.2)

where Xt = (X1t, . . . ,Xpt)
′, x= (x1, . . . , xp)

′, and

Kh(x−Xt) = h−p
p∏

i=1

K[h−1(xi −Xit)].

We note that a local polynomial estimator could also be used, with the same
asymptotic results.
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To derive the null limit distributions of the loss function test based on Q̂n

in (4.1) and the GLR statistic λn in a time series context, we provide the
following regularity conditions:

Assumption A.1. (i) For each n ∈ N, {(Yt,X ′
t)
′ ∈ R

p+1, t = 1, . . . , n},
p ∈ N, is a stationary and absolutely regular mixing process with mix-
ing coefficient β(j) ≤ Cρj for all j ≥ 0, where ρ ∈ (0,1), and C ∈ (0,∞);
(ii) E|Yt|8+δ <C for some δ ∈ (0,∞); (iii) Xt has a compact support G⊂R

p

with marginal probability density C−1 ≤ f(x)≤ C for all x in G, and f(·)
is twice continuously differentiable on G; (iv) the joint probability density
of (Xt,Xt−j), fj(x, y) ≤ C for all j > 0 and all x, y ∈ G, where C ∈ (0,∞)

does not depend on j; (v) E(X
4(1+η)
it ) ≤ C for some η ∈ (0,∞), 1 ≤ i ≤ p;

(vi) var(εt) = σ2 and σ2(x) =E(ε2t |Xt = x) is continuous on G.

Assumption A.2. (i) For each θ ∈ Θ, g(·, θ) is a measurable func-
tion of Xt; (ii) with probability one, g(Xt, ·) is twice continuously differ-
entiable with respect to θ ∈ Θ, with E supθ∈Θ0

‖ ∂
∂θg(Xt, θ)‖4+δ ≤ C and

E supθ∈Θ0
‖ ∂
∂θ ∂θ′ g(Xt, θ)‖4≤C, where Θ0 is a small neighborhood of θ0 in Θ.

Assumption A.3. There exists a sequence of constants θ∗n ∈ int(Θ) such

that n1/2(θ̂0 − θ∗n) =Op(1), where θ
∗
n = θ0 under H0 for all n≥ 1.

Assumption A.4. The kernel K :R→ [0,1] is a prespecified bounded
symmetric probability density which satisfies the Lipschitz condition.

Assumption A.5. d :R→ R
+ has a unique minimum at 0 and d(z) is

monotonically nondecreasing as |z| →∞. Furthermore, d(z) is twice contin-
uously differentiable at 0 with d(0) = 0, d′(0) = 0,D ≡ 1

2d
′′(0) ∈ (0,∞) and

|d′′(z)− d′′(0)| ≤C|z| for any z near 0.

Assumptions A.1 and A.2 are conditions on the DGP. For each t, we
allow (Xt, Yt) to depend on the sample size n. This facilitates local power
analysis. For notational simplicity, we have suppressed the dependence of
(Xt, Yt) on n. We also allow time series data with weak serial dependence.
For the β-mixing condition, see, for example, Doukhan (1994). The compact
support for regressor Xt is assumed in Fan, Zhang and Zhang (2001) for the
GLR test to avoid the awkward problem of tackling the KLIC function. This
assumption allows us to focus on essentials while maintaining a relatively
simple treatment. It could be relaxed in several ways. For example, we could
impose a weight function 1(|Xt|<Cn) in constructing Qn and λn, where 1(·)
is the indicator function, and Cn can be either fixed or grow at a suitable
rate as the sample size n→∞.

Assumption A.3 requires a
√
n-consistent estimator θ̂0 under H0, which

need not be asymptotically most efficient. It can be the conditional least
squares or quasi-MLE. Also, we do not need to know the asymptotic expan-
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sion structure of θ̂0 because the sampling variation in θ̂0 does not affect the
limit distribution of Q̂n. We can estimate θ̂0 and proceed as if it were equal
to θ0. The replacement of θ̂0 with θ0 has no impact on the limit distribution
of Q̂n.

We first derive the limit distribution of the loss function test statistic.

Theorem 1 (Loss function test). Suppose Assumptions A.1–A.5 hold,

h∝ n−ω for ω ∈ (0,1/2p) and p < 4. Define qn = Q̂n/σ̂
2
n where Q̂n is given

in (4.1) and σ̂2n = n−1 SSR1 = n−1
∑n

t=1[ε̂t − m̂h(Xt)]
2. Then (i) under H0,

s(K)qn
d≃ χ2

νnas n→∞, in the sense that

s(K)qn − νn√
2νn

d−→N(0,1),

where s(K) = σ2a(K)
∫
σ2(x)dx/[Db(K)

∫
σ4(x)dx], νn = a2(K) ×

[
∫
σ2(x)dx]2/[hpb(K)

∫
σ4(x)dx], a(K) =

∫
K

2(u)du, b(K) =
∫
[
∫
K(u +

v)K(v)dv]2 du, K(u) =
∏p

i=1K(ui),u= (u1, . . . , up)
′.

(ii) Suppose in addition var(εt|Xt) = σ2 almost surely. Then s(K) = a(K)/
[Db(K)] and νn = Ωa2(K)/[hpb(K)], where Ω is the Lebesgue’s measure of
the support of Xt.

Theorem 1 shows that under (and only under) conditional homoskedas-
ticity, the factors s(K) and νn do not depend on nuisance parameters and
nuisance functions. In this case, the loss function test statistic qn, like the
GLR statistic λn, also enjoys the Wilks phenomena that its asymptotic dis-
tribution does not depend on nuisance parameters and nuisance functions.
This offers great convenience in implementing the loss function test.

We note that the condition on the bandwidth h is relatively mild. In
particular, no undersmoothing is required. This occurs because we estimate
the conditional mean of the residuals of the parametric model g(Xt, θ). If
we directly compared a nonparametric estimator of E(Yt|Xt) with g(Xt, θ),
we could obtain the same asymptotic distribution for qn, but under a more
restrictive condition on h in order to remove the effect of the bias. For
simplicity, we consider the case with p < 4. A higher dimension p for Xt

could be allowed by suitably modifying factors s(K) and νn, but with more
tedious expressions.

Theorem 1 also holds for the statistic q0n = Q̂n/σ̂
2
n,0, where σ̂

2
n,0 = n−1 SSR0,

which is expected to have better sizes than qn in finite samples under H0

when using asymptotic theory. However, qn may have better power than q0n
because SSR0 may be substantially larger than SSR1 under HA.

To compare the qn and GLR tests, we have to derive the asymptotic
distribution of the GLR statistic λn in a time series context, a formal result
not available in the previous literature, although the GLR test has been
widely applied in the time series context [Fan and Yao (2003)].
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Theorem 2 (GLR test in time series). Suppose Assumptions A.1–A.5
hold, p < 4, and h∝ n−ω for ω ∈ (0,1/2p), and p < 4. Define λn as in (3.6),

where SSR1 =
∑n

t=1[ε̂t − m̂h(Xt)]
2, SSR0 =

∑n
t=1 ε̂

2
t and ε̂t = Yt −m(Xt, θ̂).

Then (i) under H0, r(K)λn
d≃ χ2

µn
as n→∞, in the sense that

r(K)λn − µn√
2µn

d−→N(0,1),

where r(K) = σ2c(K)
∫
σ2(x)dx/[d(K)

∫
σ4(x)dx], µn = [c(K)

∫
σ2(x)dx]2/

[hp d(K)
∫
σ4(x)dx], c(K) = K(0) − 1

2

∫
K

2(u)du, d(K) =
∫
[K(u) −

1
2

∫
K(u+ v)K(v)dv]2 du, K(u) =

∏p
i=1K(ui), u= (u1, . . . , up)

′.
(ii) Suppose in addition var(εt|Xt) = σ2 almost surely. Then r(K) = c(K)/

d(K) and µn =Ωc2(K)/[hpd(K)], where Ω is the Lebesgue’s measure of the
support of Xt.

Theorem 2 extends the results of Fan, Zhang and Zhang (2001). We allow
Xt to be a vector and allow time series data. We do not assume that the
error εt is independent of Xt or the past history of {Xt, Yt} so conditional
heteroskedasticity in a time series context is allowed. This is consistent with
the empirical stylized fact of volatility clustering for high frequency financial
time series. We note that the proof of the asymptotic normality of the GLR
test in a time series context is much more involved than in an i.i.d. context.
It is interesting to observe that the Wilks phenomena do not hold under
conditional heteroskedasticity because the factors r(K) and µn involve the
nuisance function σ2(Xt) = var(εt|Xt), which is unknown under H0. Condi-
tional homoskedasticity is required to ensure the Wilks phenomena. In this
case, r(K) and µn are free of nuisance functions.

Like the qn test, we also consider the case of p < 4. A higher dimension p
could be allowed by suitably modifying factors r(K) and µn, which would
depend on the unknown density f(x) of Xt and thus are not free of nuisance
functions, even under conditional homoskedasticity.

5. Relative efficiency. We now compare the relative efficiency between
the loss function test qn and the GLR test λn under the class of local alter-
natives

Hn(an) :g0(Xt) = g(Xt, θ0) + anδ(Xt),(5.1)

where δ :R→R is an unknown continuous function with E[δ4(Xt)]≤C. The
term anδ(Xt) characterizes the departure of the model g(Xt, θ0) from the
true function g0(Xt) and the rate an is the speed at which the departure
vanishes to 0 as the sample size n→∞. For notational simplicity, we have
suppressed the dependence of g0(Xt) on n here. Without loss of generality,
we assume that δ(Xt) is uncorrelated with Xt, namely E[δ(Xt)Xt] = 0.
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Theorem 3 (Local power). Suppose Assumptions A.1–A.5 hold, h ∝
n−ω for ω ∈ (0,1/2p), and p < 4. Then (i) under Hn(an) with an = n−1/2h−p/4,
we have

s(K)qn − νn√
2νn

d−→N(ψ,1) as n→∞,

where ψ = σ2E[δ2(Xt)]/
√

2b(K)
∫
σ4(x)dx, and s(K) and νn are as in The-

orem 1. Suppose in addition var(εt|Xt) = σ2 almost surely. Then ψ =
E[δ2(Xt)]/

√
2b(K)Ω.

(ii) under Hn(an) with an = n−1/2h−p/4, we have

r(K)λn − µn√
2µn

d−→N(ξ,1) as n→∞,

where ξ = σ2E[δ2(Xt)]/[2
√

2d(K)
∫
σ4(x)dx], and r(K) and µn are as in

Theorem 2. Suppose in addition var(εt|Xt) = σ2 almost surely. Then ξ =
E[δ2(Xt)]/[2

√
2d(K)Ω].

WhenXt is a scalar (i.e., p=1) and h=n−2/9, the factor an=n
−1/2h−p/4 =

n−4/9 achieves the optimal rate in the sense of Ingster (1993a, 1993b, 1993c).
Following a similar reasoning to Fan, Zhang and Zhang (2001), we can show
that the qn test can also detect local alternatives with the optimal rate
n−2k/(4k+p) in the sense of Ingster (1993a, 1993b, 1993c), for the function
space Fk = {δ ∈ L2 :

∫
δ(k)(x)2 dx≤C}. For p= 1 and k = 2, this is achieved

by setting h= n−2/9.
It is interesting to note that the noncentrality parameter ψ of the qn test

is independent of the curvature parameter D = d′′(0)/2 of the loss func-
tion d(·). This implies that all loss functions satisfying Assumption A.5 are
asymptotically equally efficient under Hn(an) in terms of Pitman’s efficiency
criterion [Pitman (1979), Chapter 7], although their shapes may be different.

While the qn and λn tests achieve the same optimal rate of convergence
in the sense of Ingster (1993a, 1993b, 1993c), Theorem 4 below shows that
under the same set of regularity conditions [including the same bandwidth h
and the same kernel K(·) for both tests], qn is asymptotically more efficient
than λn under Hn(an).

Theorem 4 (Relative efficiency). Suppose Assumptions A.1–A.5 hold,
h∝ n−ω for ω ∈ (0,1/2p) and p < 4. Then Pitman’s relative efficiency of the
qn test over the GLR λn test under Hn(an) with an = n−1/2h−p/4 is given
by

ARE(qn :λn) =

{∫
[2K(u)−

∫
K(u+ v)K(v)dv]2 du∫

[
∫
K(u+ v)K(v)dv]2 du

}1/(2−pω)

,(5.2)
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where K(u) =
∏p

i=1K(ui),u = (u1, . . . , up)
′. The asymptotic relative effi-

ciency ARE(qn :λn) is larger than 1 for any kernel satisfying Assumption A.4
and the condition of K(·)≤ 1.

Theorem 4 holds under both conditional heteroskedasticity and condi-
tional homoskedasticity. It suggests that although the GLR λn test is a
natural extension of the classical parametric LR test and is a generally ap-
plicable nonparametric inference procedure with many appealing features,
it does not have the optimal power property of the classical LR test. In
particular, the GLR test is always asymptotically less efficient than the loss
function test under Hn(an) whenever they use the same kernel K(·) and the
same bandwidth h, including the optimal kernel and the optimal bandwidth
(if any) for the GLR test. The relative efficiency gain of the loss function
test over the GLR test holds even if the GLR test λn uses the true likeli-
hood function. This result is in sharp contrast to the classical LR test in a
parametric setup, which is asymptotically most powerful according to the
Neyman–Pearson lemma.

Insight into the relative efficiency between qn and λn can be obtained by
a Taylor expansion of the λn statistic,

λn =
1

2

SSR0−SSR1

(SSR1 /n)
+ Remainder,(5.3)

where the remainder term is an asymptotically negligible higher order term
under Hn(an). This is equivalent to use of the loss function

D(g, gθ) = [Yt − g(Xt, θ)]
2 − [Yt − g(Xt)]

2.(5.4)

When g(Xt) is close to g(Xt, θ0), the first-order term in a Taylor expansion
of D(g, gθ) around gθ0 does not vanish to 0 under H0. More specifically, the
asymptotic distribution of λn is determined by the dominant term,

1

2
[SSR0−SSR1] =

1

2

[
n∑

t=1

ε̂2t −
n∑

t=1

[ε̂t − m̂h(Xt)]
2

]

(5.5)

=
n∑

t=1

ε̂tm̂h(Xt)−
1

2

n∑

t=1

m̂2
h(Xt).

The first term in (5.5) corresponds to the first-order term of a Taylor ex-
pansion of (5.4). It is a second-order V -statistic [Serfling (1980)], and after
demeaning, it can be approximated as a second-order degenerate U -statistic.
The second term in (5.5) corresponds to the second-order term of a Taylor
expansion of (5.4). It is a third-order V -statistic and can be approximated
by a second-order degenerate U -statistic after demeaning. These two degen-
erate U -statistics are of the same order of magnitude and jointly determine
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Table 1

Asymptotic relative efficiency of the loss function test over the GLR test

Uniform Epanechnikov Biweight Triweight

K(u) 1
2
1(|u| ≤ 1) 3

4
[1− u2]1(|u| ≤ 1) 15

16
[1− u2]21(|u| ≤ 1) 35

32
[1− u2]31(|u| ≤ 1)

ARE1 2.80 2.04 1.99 1.98
ARE2 2.84 2.06 2.01 1.99

Note: ARE denotes Pitman’s asymptotic relative efficiency of the loss function qn test to
the GLR λn test. ARE1 is for h= cn−1/5 and ARE2 is for h= cn−2/9, for 0< c<∞.

the asymptotic distribution of λn. In particular, the asymptotic variance of
λn is determined by the variances of these two U -statistics and their covari-
ance. In contrast, under Assumption A.5, a Taylor expansion suggests that
the asymptotic distribution of the qn statistic is determined by

Q̂n =D
n∑

t=1

m̂2
h(Xt) +Remainder,(5.6)

which corresponds to the second term in the expansion of SSR0−SSR1 in
(5.5). As it turns out, the asymptotic variance of this term alone is always
smaller than the variance of the difference of the two terms in (5.5). This
leads to a more efficient test than the GLR test, as is shown in Theorem 4.
We note that the first term in (5.5), which causes an efficiency loss for the
GLR test relative to the qn test, is always present no matter whether we
use the bias-reduction device (i.e., estimating the conditional mean of the
estimated model residuals).

To assess the magnitude of the relative efficiency gain of the qn test over
the λn test, we consider a few commonly used multiweight kernels: the uni-
form, Epanechnikov, biweight and triweight kernels; see Table 1 below. Sup-
pose the bandwidth rate parameter ω = 1/5, 2/9, respectively, in the uni-
variate case (i.e., p= 1). The rate of ω = 1/5 gives the optimal bandwidth
rate for estimating g0(·), and the rate of ω = 2/9 achieves the optimal con-
vergence rate in the sense of Ingster (1993a, 1993b, 1993c). Table 1 reports
Pitman’s asymptotic relative efficiencies (ARE). The efficiency gain of us-
ing the qn test is substantial, no matter if the bandwidth h is of the order
of n−1/5 or n−2/9. Furthermore, there is little difference in the asymptotic
relative efficiency between the two choices of h. These are confirmed in our
simulation study below.

We emphasize that Theorem 4 does not imply that the GLR test should be
abandoned. Indeed, it is a natural extension of the classical LR test and has
many appealing features. It will remain as a useful, general nonparametric
inference procedure in practice.

While the relative efficiency of the loss function qn test over the GLR
λn test holds whenever the same bandwdith h and the same kernel K(·)
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are used, the choice of an optimal bandwidth remains an important issue
for each test. Theorems 1–4 allow for a wide range of the choices of h,
but they do not provide a practical guidance on how to choose h. In prac-
tice, a simple rule of thumb is to choose h = SXn

−1/5 or h = SXn
−2/9,

where S2
X is the sample variance of {Xt}nt=1. One could also choose a data-

driven bandwidth using a cross-validation procedure, that is, choose h =
argminc1n−1/(p+4)≤h≤c1n−1/(p+4)

∑n
t=1[ε̂t − m̂h,t(Xt)]

2 for some prespecified
constants 0< c1 < c2 <∞, where for each given t, m̂h,t(Xt) is the leave-one-
out estimator that is based on the sample {ε̂s,Xs}ns=1,s 6=t. The bandwidth
based on cross-validation is asymptotically optimal for estimation in terms
of mean squared errors, but it may not be optimal for the qn and λn tests.
For testing problems, the central concern is the Type I error or Type II
error, or both. Based on the Edgeworth expansion of the asymptotic distri-
bution of a test statistic, Gao and Gijbels (2008) show that the choice of h
affects both Type I and Type II errors of a closely related nonparametric
test, and usually there exists a tradeoff between Type I and Type II errors
when choosing h. A sensible optimal rule is to choose h to maximize the
power of a test given a significance level. Gao and Gijbels (2008) derive the
leading terms of the size and power functions of their test statistic, and then
choose a bandwidth to maximize the power under a class of local alterna-
tives similar to (5.1) under a controlled significance level, that is, to choose
h=maxh∈Bn(α) βn(h), where Bn(α) = {h :α− cmin < αn(h)< α+ cmin} for
some prespecified small constant cmin ∈ (0, α), and αn(h) and βn(h) are the
size and power functions of the nonparametric test. They then propose a
data-driven bandwidth in combination with a bootstrap and show that it
works well in finite samples. Unfortunately, Gao and Gijbels’s (2008) re-
sults cannot be directly applied to either the qn or λn test, because the
higher order terms of αn(h) and βn(h) depend on the form of test statistic,
the DGP, the kernel K and the bandwidth h, among many other things.
However, it is possible to extend their approach to the qn and λn tests to
obain their optimal banwidths, respectively. As the associated technicality
is quite involved, we leave this important problem for subsequent work. We
note that Sun, Phillips and Jin (2008), in a different context, also consider a
data-driven bandwidth by minimizing a weighted average of the Type I and
Type II errors of a test, namely choose h = argminh(

wn
1+wn

eIn + 1
1+wn

eIIn ),

where eIn and eIIn are the Type I and Type II errors, respectively, and wn is
a weight function that reflects the relative importance of eIn and eIIn .

6. Monte Carlo evidence. We now compare the finite sample perfor-
mance of the loss function qn test and the GLR λn test. To examine the
sizes of the tests, we consider the following null linear regression model in a
time series context:
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DGP 0 (Linear regression).




Yt = 1+Xt + εt,

Xt = 0.5Xt−1 + vt,

vt ∼ i.i.d. N(0,1).

Here, Xt is truncated within its two standard deviations. To examine ro-
bustness of the tests, we consider a variety of distributions for the error
εt: (i) εt ∼ i.i.d. N(0,1), (ii) εt ∼ i.i.d. Student-t5, (iii) εt ∼ i.i.d. U [0,1],
(iv) εt ∼ i.i.d. lnN(0,1) and (v) εt ∼ i.i.d. χ2

1, where the εt in (iii)–(v) have
been scaled to have mean 0 and variance 1.

Because the asymptotic normal approximation for the qn and λn tests
might not perform well in finite samples, we also use a conditional bootstrap
procedure based on the Wilks phenomena:

Step 1: Obtain the parameter estimator θ̂0 (e.g., OLS) of the null linear
regression model, and the nonparametric estimator ĝ(Xt).

Step 2: Compute the qn statistic and the residual ε̂t = Yt − ĝ(Xt) from
the nonparametric model.

Step 3: Conditionally on each Xt, draw a bootstrap error ε∗t from the

centered empirical distribution of ε̂t and compute Y ∗
t = X ′

tθ̂
∗
0 + ε̂∗t . This

forms a conditional bootstrap sample {Xt, Y
∗
t }nt=1.

Step 4: Use the conditional bootstrap sample {Xt, Y
∗
t }nt=1 to compute a

bootstrap statistic q∗n, using the same kernel K(·) and the same bandwidth
h as in step 2.

Step 5: Repeat steps 3 and 4 for a total of B times, where B is a large
number. We then obtain a collection of bootstrap test statistics, {q∗nl}Bl=1.

Step 6: Compute the bootstrap P value P ∗ =B−1
∑B

l=1 1(qn < q∗nl). Re-
ject H0 at a prespecified significance level α if and only if P ∗ <α.

When conditional heteroskedasticity exists, we can modify step 2 by us-
ing a wild bootstrap for {ε̂∗t }. If Xt contains lagged dependent variables, we
can use a recursive simulation method; see, for example, Franke, Kreiss and
Mammen (2002). For space, we do not justify the validity of the bootstrap
here. Fan and Jiang [(2007), Theorem 7] show the consistency of the boot-
strap for the GLR test in an i.i.d. context. We could establish the consistency
of the bootstrap for our loss function test by following the approaches of Fan
and Jiang (2007) and Gao and Gijbels (2008).

We consider two versions of the loss function test, one is to standardize
Q̂n by σ̂2n = n−1 SSR1, where SSR1 is the sum of squared residuals of the
nonparametric regression estimates. This is denoted as qn. The other version
is to standardize Q̂n by σ̂2n,0 = n−1 SSR0, where SSR0 is the sum of squared

residuals of the null linear model. This is denoted as q0n. It is expected that
qn may be more powerful than q0n in finite samples under HA, because SSR0
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is expected to be significantly larger than SSR1 under HA. To construct the
qn and q0n tests, we choose the family of linex loss functions in (3.12), with
(α,β) = (0,1), (0.2,1), (0.5,1) and (1,1), respectively; see Figure 1 for their
shapes. The choice of (α,β) = (0,1) corresponds to the symmetric quadratic
loss function, while the degree of asymmetry of the loss function increases as
α increases (the choice of β has no impact on the qn tests). Various choices of
(α,β) thus allow us to examine sensitivity of the power of the qn tests to the
choices of the loss function. Rather conveniently, when using the bootstrap
procedure, there is no need to compute the centering and scaling factors for
the qn and q0n tests; it suffices to compare the statistic qn or q0n with their
bootstrap counterparts. We choose B = 99. The same bootstrap is used for
the GLR test λn.

To examine the power of the tests, we consider three nonlinear DGP’s:

DGP 1 (Quadratic regression).

Yt = 1+Xt + θX2
t + εt.

DGP 2 (Threshold regression).

Yt = 1+Xt1(Xt > 0) + (1 + θ)Xt1(Xt ≤ 0) + εt.

DGP 3 (Smooth transition regression).

Yt = 1+Xt + [1− θF (Xt)]Xt + εt,

where F (Xt) = [1 + exp(−Xt)]
−1.

We consider various values for θ in each DGP to examine how the power
of the tests changes as the value of θ changes.

To examine sensitivity of all tests to the choices of h, we consider h =
SXn

−ω for ω = 2
9 and 1

5 , respectively, where SX is the sample standard
deviation of {Xt}nt=1. These correspond to the optimal rate of convergence in
the sense of Ingster (1993a, 1993b, 1993c) and the optimal rate of estimation
in terms of mean squared errors, respectively. The results are similar. Here,
we focus our discussion on the results with h = SXn

−2/9, as reported in
Tables 2–6. The results with h= SXn

−1/5 are reported in Tables S.1–S.5 of
the supplementary material. We use the uniform kernel K(z) = 1

21(|z| ≤ 1)
for all tests. We have also used the biweight kernel, and the results are very
similar (so, not reported here).

Tables 2 and 3 report the empirical rejection rates of the tests under H0

(DGP 0) at the 10% and 5% levels, using both asymptotic and bootstrap
critical values, respectively. We first examine the size of the tests using
asymptotic critical values, with n= 100,250 and 500, respectively. Table 2
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Empirical sizes of tests using asymptotic critical values

n = 100 n = 250 n = 500

qn q0

n
GLR qn q0

n
GLR qn q0

n
GLR

(a,β) 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP S.1: i.i.d. normal errors

(0.0,1.0) 7.7 5.0 4.5 2.9 7.4 5.1 6.0 3.6 4.6 2.6 7.3 4.5 6.8 4.8 6.3 4.0 7.2 3.8

(0.2,1.0) 8.1 5.2 4.5 3.0 7.4 5.1 6.1 3.8 4.7 2.5 7.3 4.5 6.6 4.9 6.2 4.1 7.2 3.8

(0.5,1.0) 8.4 5.2 4.9 3.5 7.4 5.1 6.6 3.7 4.8 2.6 7.3 4.5 6.6 4.8 6.1 4.5 7.2 3.8

(1.0,1.0) 9.4 5.8 5.7 4.3 7.4 5.1 6.8 4.3 5.2 3.0 7.3 4.5 6.9 5.0 6.0 4.6 7.2 3.8

DGP S.2: i.i.d. Student-t5 errors

(0.0,1.0) 6.8 4.3 4.0 2.5 6.4 3.4 6.0 3.3 4.4 2.4 4.9 2.7 5.4 3.1 4.3 2.4 7.7 4.5

(0.2,1.0) 6.7 4.3 4.1 2.6 6.4 3.4 5.8 3.8 4.4 2.4 4.9 2.7 5.4 3.2 4.6 2.5 7.7 4.5

(0.5,1.0) 6.9 4.5 4.3 2.6 6.4 3.4 5.9 3.9 4.3 2.7 4.9 2.7 5.6 3.3 4.8 2.6 7.7 4.5

(1.0,1.0) 8.5 5.1 5.0 3.0 6.4 3.4 6.4 4.4 5.0 3.4 4.9 2.7 6.2 3.5 5.1 3.0 7.7 4.5

DGP S.3: i.i.d. uniform errors

(0.0,1.0) 7.1 5.2 4.3 2.7 6.2 3.5 6.8 4.2 5.5 2.9 6.6 4.0 6.4 4.2 5.6 3.5 6.3 3.2

(0.2,1.0) 7.1 5.4 4.5 2.5 6.2 3.5 6.8 4.4 5.4 2.9 6.6 4.0 6.2 4.2 5.3 3.5 6.3 3.2

(0.5,1.0) 7.4 5.4 4.9 2.7 6.2 3.5 7.0 4.5 5.6 3.1 6.6 4.0 6.2 4.5 5.5 3.6 6.3 3.2

(1.0,1.0) 9.0 6.0 5.7 3.7 6.2 3.5 7.1 5.1 5.9 3.4 6.6 4.0 6.7 4.6 6.1 3.7 6.3 3.2

DGP S.4: i.i.d. log-normal errors

(0.0,1.0) 9.4 7.2 6.8 4.3 8.5 6.6 6.1 4.2 4.8 2.8 6.7 3.6 6.9 5.1 6.3 4.4 6.9 4.1

(0.2,1.0) 9.9 7.9 7.6 5.2 8.5 6.6 6.5 4.7 4.9 3.3 6.7 3.6 7.5 5.6 6.6 4.5 6.9 4.1

(0.5,1.0) 10.4 8.7 8.2 6.5 8.5 6.6 8.1 4.8 5.9 4.3 6.7 3.6 7.9 5.9 7.1 5.3 6.9 4.1

(1.0,1.0) 12.4 10.2 9.5 7.9 8.5 6.6 9.2 6.9 7.6 5.5 6.7 3.6 9.5 7.1 8.3 6.2 6.9 4.1

DGP S.5: i.i.d. chi-square errors

(0.0,1.0) 7.6 5.9 5.6 3.5 7.3 5.2 6.3 4.0 4.6 2.8 6.3 3.1 5.2 3.5 4.4 2.8 5.4 2.9

(0.2,1.0) 8.1 6.3 6.0 3.8 7.3 5.2 6.5 4.2 5.1 3.0 6.3 3.1 5.2 3.7 4.9 3.1 5.4 2.9

(0.5,1.0) 8.8 7.2 7.0 4.6 7.3 5.2 7.0 4.8 5.6 3.7 6.3 3.1 5.5 3.9 5.3 3.3 5.4 2.9

(1.0,1.0) 10.8 9.2 8.9 6.2 7.3 5.2 7.8 5.6 6.3 4.8 6.3 3.1 6.3 4.6 5.9 4.1 5.4 2.9

Notes: (i) 1000 iterations; (ii) GLR, the generalized likelihood ratio test, qn and q0n, loss function-based tests; (iii) qn is standardized by SSR1, the sum of

squared residuals of the nonparametric regression estimates, and q0n is standardized by SSR0 , the sum of squared residuals of the null linear model; (iv) The

uniform kernel is used for GLR, qn and q0n; the bandwidth h= SXn−2/9, where SX is the sample standard deviation of {Xt}
n
t=1

; (v) The qn tests are based

on the linex loss function: d(z) = β

α2
[exp(αz)− 1− αz]; (vi) Yt = 1+Xt + εt, Xt = 0.5Xt−1 + vt, vt ∼ i.i.d. N(0,1), where DGP S.1: εi ∼ i.i.d. N(0,1); DGP

S.2: εi ∼ i.i.d. Student-t5; DGP S.3: εi ∼ i.i.d. U [0,1]; DGP S.4: εi ∼ i.i.d. logN(0,1); DGP S.5: εi ∼ i.i.d. χ2

1
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Table 3

Empirical sizes of tests using bootstrap critical values

n = 100 n = 250 n = 500

qn q0

n
GLR qn q0

n
GLR qn q0

n
GLR

(a,β) 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP S.1: i.i.d. normal errors

(0.0,1.0) 10.0 5.4 10.0 5.3 10.4 4.4 11.1 6.1 11.8 5.9 11.5 5.0 11.4 6.1 11.6 6.1 10.9 6.5

(0.2,1.0) 10.0 5.4 10.0 5.6 10.4 4.4 11.8 6.2 12.1 6.3 11.5 5.0 11.4 6.1 11.4 6.0 10.9 6.5

(0.5,1.0) 9.4 4.9 9.7 4.9 10.4 4.4 11.4 5.9 11.7 5.8 11.5 5.0 11.4 6.4 11.6 6.2 10.9 6.5

(1.0,1.0) 9.2 4.6 9.7 4.5 10.4 4.4 11.3 5.8 11.2 5.5 11.5 5.0 11.7 6.4 12.2 6.1 10.9 6.5

DGP S.2: i.i.d. Student-t5 errors

(0.0,1.0) 9.1 4.1 8.8 4.4 9.5 3.8 8.8 4.3 8.9 4.5 9.3 3.9 10.1 4.7 10.7 5.2 11.5 5.7

(0.2,1.0) 8.8 4.2 8.7 4.2 9.5 3.8 8.8 4.3 9.0 4.6 9.3 3.9 10.6 5.0 10.8 4.8 11.5 5.7

(0.5,1.0) 9.4 4.0 8.7 4.4 9.5 3.8 9.1 4.5 8.8 4.5 9.3 3.9 10.5 5.1 10.3 5.0 11.5 5.7

(1.0,1.0) 9.8 3.9 10.2 4.5 9.5 3.8 8.8 5.0 9.2 4.7 9.3 3.9 10.6 5.4 10.5 5.2 11.5 5.7

DGP S.3: i.i.d. uniform errors

(0.0,1.0) 10.3 5.0 10.1 5.3 9.1 4.2 11.1 5.8 11.2 5.8 10.9 6.5 9.6 6.0 9.5 6.1 10.6 5.3

(0.2,1.0) 10.3 5.1 10.3 5.5 9.1 4.2 11.1 5.8 10.9 5.7 10.9 6.5 9.6 6.0 9.5 6.0 10.6 5.3

(0.5,1.0) 10.8 5.1 10.7 5.4 9.1 4.2 11.2 5.6 11.2 5.7 10.9 6.5 9.4 6.0 9.4 6.0 10.6 5.3

(1.0,1.0) 10.3 5.5 10.6 5.2 9.1 4.2 10.7 5.7 11.0 5.8 10.9 6.5 9.5 6.0 9.4 6.2 10.6 5.3

DGP S.4: i.i.d. log-normal errors

(0.0,1.0) 11.0 5.8 10.9 6.1 10.2 5.5 9.7 4.6 9.6 5.1 10.8 4.5 10.3 5.3 10.4 5.4 11.0 5.9

(0.2,1.0) 10.7 5.9 10.6 6.0 10.2 5.5 10.0 4.7 9.5 4.9 10.8 4.5 9.9 5.3 10.3 5.4 11.0 5.9

(0.5,1.0) 10.9 5.8 10.8 5.6 10.2 5.5 9.5 4.7 9.4 4.7 10.8 4.5 9.9 5.6 10.0 5.4 11.0 5.9

(1.0,1.0) 10.7 5.8 11.0 5.9 10.2 5.5 9.7 4.5 9.5 4.4 10.8 4.5 10.1 5.6 10.4 5.4 11.0 5.9

DGP S.5: i.i.d. chi-square errors

(0.0,1.0) 9.4 4.4 9.2 4.4 9.7 5.3 10.2 4.8 10.2 4.9 9.3 4.6 7.9 3.7 8.2 3.7 9.0 4.1

(0.2,1.0) 9.3 4.5 9.0 4.3 9.7 5.3 10.2 4.9 10.0 4.9 9.3 4.6 7.7 3.7 8.0 3.7 9.0 4.1

(0.5,1.0) 9.2 4.9 9.1 4.8 9.7 5.3 10.2 4.7 10.2 4.9 9.3 4.6 7.8 3.7 7.9 3.7 9.0 4.1

(1.0,1.0) 8.7 5.2 8.5 4.8 9.7 5.3 10.3 3.7 9.9 3.6 9.3 4.6 7.8 3.6 7.7 3.7 9.0 4.1

Notes: (i) 1000 iterations; (ii) GLR, the generalized likelihood ratio test, qn and q0n, loss function-based tests; (iii) qn is standardized by SSR1 , the sum of

squared residuals of the nonparametric regression estimates, and q0n is standardized by SSR0 , the sum of squared residuals of the null linear model; (iv) The

uniform kernel is used for GLR, qn and q0n; the bandwidth h= SXn−2/9, where SX is the sample standard deviation of {Xt}
n
t=1

; (v) The qn tests are based

on the linex loss function: d(z) = β

α2
[exp(αz)− 1−αz]; (vi) Yt = 1+Xt + εt, Xt = 0.5Xt−1 + vt, vt ∼ i.i.d. N(0,1), where DGP S.1: εi ∼ i.i.d. N(0,1); DGP

S.2: εi ∼ i.i.d. Student-t5; DGP S.3: εi ∼ i.i.d. U [0,1]; DGP S.4: εi ∼ i.i.d. logN(0,1); DGP S.5: εi ∼ i.i.d. χ2

1
.
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shows that all tests, λn, qn and q0n, have reasonable sizes in finite samples,
and they are robust to various error distributions, but they all show some
underrejection, particularly at the 10% level. The qn and λn tests have
similar sizes in most cases, whereas q0n shows a bit more underrejection.
Overall, the sizes of the qn, q

0
n and λn tests display some underrejections in

most cases in finite samples, but they are not unreasonable.
Next, we examine the size of the tests based on the bootstrap. Table 3

shows that overall, the rejection rates of all tests based on the bootstrap are
close to the significance levels (10% and 5%), indicating the gain of using
the bootstrap in finite samples. The sizes of all tests are robust to a variety
of error distributions, confirming the Wilks phenomena that the asymptotic
distribution of both the qn and λn tests are distribution free. For the loss
function tests qn and q0n, the sizes are very similar for different choices of
parameters (α,β) governing the shape of the linex loss function. We note
that when asymptotic critical values are used, the sizes of the tests with
h = SXn

−2/9 are slightly better than with h = SXn
−1/5. When bootstrap

critical values are used, however, the sizes of all tests with h= SXn
−2/9 and

h= SXn
−1/5, respectively, are very similar.

Next, we turn to the powers of the tests under HA. Since the sizes of
the tests using asymptotic critical values are different in finite samples, we
use the bootstrap procedure only, which delivers similar sizes close to sig-
nificance levels and thus provides a fair ground for comparison. Tables 4–6
report the empirical rejection rates of the tests under DGP 1 (quadratic
regression), DGP 2 (threshold regression) and DGP 3 (smooth transition
regression), respectively. For all DGPs, the loss function tests qn and q0n
are more powerful than the GLR test, confirming our asymptotic efficiency
analysis. Interestingly, for the two loss function tests, qn, which is standard-
ized by the nonparametric SSR1, is roughly equally powerful to q0n, which
is standardized by the parametric SSR0, although asymptotic analysis sug-
gests that qn should be more powerful than q0n under HA, because SSR0 is
significantly larger than SSR1 under HA. Obviously, this is due to the use
of the bootstrap. Since the bootstrap statistics q∗n and q0∗n are standardized
by SSR∗

0 and SSR∗
1, respectively, where SSR∗

1 < SSR∗
0, the ranking between

qn and q∗n remains more or less similar to the ranking between q0n and q0∗n ,
and therefore q∗n and q0∗n have similar power. Under DGP 1, the powers of
qn and q0n increase as the degree of asymmetry of the linex loss function,
which is indexed by α, increases. When α= 1, the powers of qn and q0n are
substantially higher than the GLR test. Under DGP 2, there is some ten-
dency that the powers of qn and q0n increase in α for θ < 0, whereas they
decrease in α for θ > 0. When θ is close to 0, qn and q0n have similar power
to the GLR test, but as |θ|> 0 increases, they are more powerful than the
GLR test. Similarly, under DGP 3, the powers of qn and q0n increase in α for
θ < 0, whereas they decrease in α for θ > 0. Nevertheless, by and large, the
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Table 4

Empirical powers of tests using bootstrap critical values

n = 100 n = 250 n = 500

qn q0
n

GLR qn q0
n

GLR qn q0
n

GLR

(a,β) θ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.1: Quadratic regression
(0.0,1.0) 0.1 22.6 12.8 23.0 12.4 20.2 12.4 38.4 27.2 39.2 27.8 29.4 20.4 62.0 50.6 62.2 50.8 47.4 33.6

0.2 53.2 39.8 53.6 39.6 45.2 34.8 90.6 83.4 91.0 83.4 80.4 70.6 99.4 99.0 99.4 99.0 97.4 95.6

0.3 85.2 77.0 85.2 77.2 76.8 65.8 99.6 99.2 99.6 99.2 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.4 98.4 99.4 98.8 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(0.2,1.0) 0.1 23.4 13.6 23.6 13.0 20.2 12.4 39.8 28.0 40.0 28.4 29.4 20.4 63.8 51.8 64.0 52.0 47.4 33.6
0.2 55.8 41.2 55.8 41.0 45.2 34.8 91.0 84.0 91.4 83.8 80.4 70.6 99.4 99.2 99.4 99.2 97.4 95.6

0.3 86.2 78.4 86. 78.6 76.8 65.8 99.8 99.2 99.6 99.2 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.4 98.6 99.4 99.2 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(0.5,1.0) 0.1 24.8 14.4 24.2 14.6 20.2 12.4 42.6 30.0 41.4 29.2 29.4 20.4 64.8 53.4 64.6 53.6 47.4 33.6

0.2 58.0 43.8 59.0 43.4 45.2 34.8 91.4 85.2 92.0 85.8 80.4 70.6 99.6 99.4 99.6 99.4 97.4 95.6
0.3 87.0 80.0 86.6 80.2 76.8 65.8 99.8 99.4 99.6 99.4 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.4 98.8 99.4 99.2 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(1.0,1.0) 0.1 27.6 16.2 26.2 18.0 20.2 12.4 44.6 32.4 45.2 31.4 29.4 20.4 66.4 66.0 66.0 56.6 47.4 33.6
0.2 60.8 46.4 62.2 46.4 45.2 34.8 92.2 87.0 92.6 88.2 80.4 70.6 99.6 99.4 99.8 99.4 97.4 95.6
0.3 88.8 81.6 88.4 80.6 76.8 65.8 99.8 99.6 99.6 97.2 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.6 99.0 99.6 99.2 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: (i) 1000 iterations; (ii) GLR, the generalized likelihood ratio test, qn and q0n, loss function-based tests; (iii) qn is standardized
by SSR1, the sum of squared residuals of the nonparametric regression estimates, and q0n is standardized by SSR0, the sum of squared
residuals of the null linear model; (iv) The uniform kernel is used for GLR, qn and q0n; the bandwidth h= SXn−2/9, where SX is the
sample standard deviation of {Xt}

n
t=1; (v) The qn tests are based on the linex loss function: d(z) = β

α2 [exp(αz)− 1−αz]; (vi) DGP P.1,
Yt = 1+Xt + θX2

t + εt, where {εi} ∼ i.i.d. N(0,1).
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Table 5

Empirical powers of tests using bootstrap critical values

n = 100 n = 250 n = 500

qn q0

n
GLR qn q0

n
GLR qn q0

n
GLR

(a,β) θ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.2: Threshold regression

(0.0,1.0) −1.0 73.0 60.2 73.2 61.4 60.8 46.4 98.8 96.2 98.8 96.4 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0

−0.5 28.0 18.0 28.4 18.4 24.2 15.6 51.8 38.2 52.6 39.8 39.2 28.6 81.6 69.0 81.8 69.4 62.6 51.6

−0.2 13.4 7.2 13.4 7.2 13.0 7.8 17.0 8.8 16.4 8.8 13.4 6.8 24.8 15.4 25.2 15.6 18.6 12.2

0.2 11.0 5.8 11.4 6.4 12.6 5.8 14.6 8.0 15.0 8.4 12.6 7.2 23.2 14.6 23.4 14.4 18.6 11.0

0.5 25.0 15.6 25.2 14.4 21.0 11.8 50.4 36.8 50.4 37.0 37.2 25.4 79.2 69.6 79.0 69.4 64.8 51.8

1.0 71.4 59.0 72.2 58.6 60.2 43.4 97.6 94.6 97.6 94.6 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

(0.2,1.0) −1.0 74.0 61.6 74.8 62.2 60.8 46.4 99.0 96.8 98.8 96.8 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0

−0.5 29.4 18.2 29.8 18.6 24.2 15.6 53.0 40.2 53.6 39.8 39.2 28.6 81.0 70.4 81.8 69.8 62.6 51.6

−0.2 14.0 7.4 13.8 7.2 13.0 7.8 17.6 8.4 17.2 8.2 13.4 6.8 25.2 15.2 25.2 15.6 18.6 12.2

0.2 10.8 6.2 11.2 6.0 12.6 5.8 14.0 7.6 14.2 7.8 12.6 7.2 23.4 14.8 23.4 14.2 18.6 11.0

0.5 24.0 13.8 23.8 12.8 21.0 11.8 49.0 36.6 49.2 36.2 37.2 25.4 78.6 68.6 78.4 69.0 64.8 51.8

1.0 70.2 56.8 70.4 56.4 60.2 43.4 97.2 94.2 97.4 94.6 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

(0.5,1.0) −1.0 76.2 62.2 76.8 63.0 60.8 46.4 99.0 96.8 98.8 97.0 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0

−0.5 30.4 19.2 31.2 19.8 24.2 15.6 55.0 41.2 56.4 40.4 39.2 28.6 81.4 71.6 81.8 71.4 62.6 51.6

−0.2 14.0 7.8 14.0 8.2 13.0 7.8 18.0 9.4 18.4 10.0 13.4 6.8 26.2 16.2 25.6 15.8 18.6 12.2

0.2 9.4 6.0 9.6 5.8 12.6 5.8 13.0 6.8 13.8 7.0 12.6 7.2 23.0 14.0 22.4 14.0 18.6 11.0

0.5 21.4 12.4 21.0 12.0 21.0 11.8 48.8 35.2 48.6 35.0 37.2 25.4 78.4 66.8 78.0 66.8 64.8 51.8

1.0 68.8 54.6 67.8 52.8 60.2 43.4 96.8 94.0 97.0 94.0 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

(1.0,1.0) −1.0 77.0 63.6 77.8 64.2 60.8 46.4 99.0 96.8 99.0 96.8 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0

−0.5 31.2 21.4 32.4 22.0 24.2 15.6 57.6 44.0 57.8 44.0 39.2 28.6 82.6 74.2 83.2 73.8 62.6 51.6

−0.2 14.0 8.0 14.8 8.2 13.0 7.8 18.6 11.0 19.6 10.8 13.4 6.8 26.0 16.0 26.6 17.0 18.6 12.2

0.2 9.2 6.0 9.4 6.0 12.6 5.8 12.2 6.4 12.4 6.8 12.6 7.2 21.4 12.6 21.0 13.0 18.6 11.0

0.5 19.2 10.0 18.4 9.6 21.0 11.8 47.2 31.6 46.8 32.2 37.2 25.4 76.4 64.0 75.8 65.2 64.8 51.8

1.0 63.8 48.2 62.2 46.2 60.2 43.4 95.8 92.8 96.0 93.0 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

Notes: (i) 1000 iterations; (ii) GLR the generalized likelihood ratio test, qn and q0n loss function-based tests; (iii) qn is standardized by SSR1, the sum of

squared residuals of the nonparametric regression estimates, and q0n is standardized by SSR0 , the sum of squared residuals of the null linear model; (iv) The

uniform kernel is used for GLR, qn and q0n; the bandwidth h= SXn−2/9, where SX is the sample standard deviation of {Xt}
n
t=1

; (v) The qn tests are based

on the linex loss function: d(z) = β

α2
[exp(αz)− 1− αz]; (vi) DGP P.2, Yt = 1+Xt1(Xt > 0) + (1 + θ)Xt1(Xt ≤ 0) + εt, where {εi} ∼ i.i.d. N(0,1).
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Table 6

Empirical powers of tests

n = 100 n= 250 n = 500

qn q0
n

GLR qn q0
n

GLR qn q0
n

GLR

(a,β) θ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.3: Smooth transition regression

(0.0,1.0) −1.0 53.2 40.0 54.0 41.6 43.8 33.6 90.2 84.6 90.2 84.2 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8

−0.5 22.6 13.0 22.8 13.8 20.8 11.8 37.8 27.2 38.8 27.4 27.8 20.4 61.2 49.2 60.2 49.8 47.6 35.2

0.5 20.6 10.4 19.8 11.4 16.6 9.6 36.2 25.0 35.6 26.2 29.2 17.0 60.8 49.4 60.2 50.6 46.8 35.0

1.0 52.2 38.2 51.4 37.6 44.0 29.8 87.4 79.6 86.8 79.8 78.2 69.0 99.4 98.6 99.4 98.6 98.4 96.0

1.5 85.6 75.2 86.6 77.0 75.6 65.6 99.6 99.4 99.6 99.2 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

(0.2,1.0) −1.0 55.0 40.4 56.0 42.6 43.8 33.6 90.6 85.0 90.4 85.6 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8

−0.5 23.8 14.0 23.0 14.2 20.8 11.8 39.4 28.4 40.2 28.2 27.8 20.4 61.6 49.8 60.8 51.0 47.6 35.2

0.5 19.4 10.2 19.4 10.4 16.6 9.6 35.4 24.4 35.2 25.2 29.2 17.0 59.2 48.8 59.0 49.2 46.8 35.0

1.0 50.4 37.2 49.8 36.2 44.0 29.8 86.8 79.0 85.6 78.4 78.2 69.0 99.4 98.6 99.4 98.6 98.4 96.0

1.5 84.6 74.2 85.0 75.2 75.6 65.6 99.4 99.4 99.6 99.0 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

(0.5,1.0) −1.0 56.6 43.0 57.6 44.0 43.8 33.6 86.2 63.6 86.0 64.6 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8

−0.5 25.0 14.4 24.0 14.4 20.8 11.8 40.4 29.4 40.6 29.2 27.8 20.4 62.4 51.4 61.4 51.8 47.6 35.2

0.5 18.4 9.4 18.4 8.8 16.6 9.6 34.6 23.0 34.0 23.2 29.2 17.0 58.0 47.4 57.8 48.0 46.8 35.0

1.0 48.8 34.0 47.6 33.2 44.0 29.8 85.0 77.6 85.0 77.8 78.2 69.0 99.2 98.2 99.4 98.4 98.4 96.0

1.5 83.0 70.2 82.6 72.0 75.6 65.6 99.4 98.8 99.6 99.0 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

(1.0,1.0) −1.0 58.4 46.4 58.8 46.0 43.8 33.6 92.0 87.4 91.8 86.8 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8

−0.5 26.2 16.2 26.2 16.4 20.8 11.8 43.6 30.8 43.8 30.6 27.8 20.4 64.6 52.4 64.0 52.2 47.6 35.2

0.5 14.6 7.4 15.0 7.6 16.6 9.6 31.0 20.2 31.8 20.6 29.2 17.0 56.8 44.4 56.6 45.2 46.8 35.0

1.0 44.0 27.8 43.2 29.0 44.0 29.8 83.0 75.4 82.8 75.8 78.2 69.0 99.2 97.6 99.2 97.8 98.4 96.0

1.5 78.2 62.8 79.4 64.8 75.6 65.6 99.4 98.4 99.4 98.6 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

Notes: (i) 1000 iterations; (ii) GLR the generalized likelihood ratio test, qn and q0n, loss function-based tests; (iii) qn is standardized by SSR1, the

sum of squared residuals of the nonparametric regression estimates, and q0n is standardized by SSR0, the sum of squared residuals of the null linear

model; (iv) The uniform kernel is used for GLR, qn and q0n; the bandwidth h= SXn−2/9, where SX is the sample standard deviation of {Xt}nt=1; (v)

The qn tests are based on the linex loss function: d(z) = β
α2

[exp(αz)−1−αz]; (vi) DGP P.3, Yt = 1+Xt+[1−F (Xt)θ]Xt+ εt, F (Xt) =
1

1+exp(−Xt)
,

where {εi} ∼ i.i.d. N(0,1).
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powers of both qn and q0n do not change much across the different choices of
parameters (α,β) governing the shape of the linex loss function. Although
the shape of the loss function changes dramatically when α changes from 0
to 1, the powers of qn and q0n remain relatively robust.

All tests become more powerful as the departures from linearity increases
(as characterized by the value of θ in each DGP), and as the sample size n
increases.

7. Conclusion. The GLR test has been proposed as a generally applica-
ble method for nonparametric testing problems. It inherits many advantages
of the maximum LR test for parametric models. In this paper, we have shown
that despite its general nature and many appealing features, the GLR test
does not have the optimal power property of the classical LR test. We pro-
pose a loss function test in a time series context. The new test enjoys the
same appealing features as the GLR test, but is more powerful in terms
of Pitman’s asymptotic efficiency. This holds no matter what kernel and
bandwidth are used, and even when the true likelihood function is available
for the GLR test. The efficiency gain, together with more relevance to deci-
sion making under uncertainty of using a loss function, suggests that the loss
function approach can be a generally applicable and powerful nonparametric
inference procedure alternative to the GLR principle.

MATHEMATICAL APPENDIX

Throughout the appendix, we let m̃h(x) be defined in the same way as

m̂h(x) in (4.2) with {εt = Yt− g0(Xt)}nt=1 replacing {ε̂t = Yt− g(Xt, θ̂0)}nt=1.
Also, C ∈ (1,∞) denotes a generic bounded constant. This appendix pro-
vides the structure of our proof strategy. We leave the detailed proofs of
most technical lemmas and propositions to the supplementary material.

Proof of Theorem 1. Theorem 1 follows as a special case of Theo-
rem 3(i) with δ(Xt) = 0. �

Proof of Theorem 2. Theorem 2 follows as a special case of Theo-
rem 3(ii) with δ(Xt) = 0. �

Proof of Theorem 3(i). We shall first derive the asymptotic distri-
bution of qn under Hn(an). From Lemmas A.1 and A.2 and Propositions A.1
and A.2 below, we can obtain

hp/2D−1qn − h−p/2σ−2
∫
K2(u)du

∫
σ2(x)dx√

2σ−4
∫
[
∫
K(u)K(u+ v)du]2 dv

∫
σ4(x)dx

d−→N(ψ,1).

The desired result of Theorem 3(i) then follows immediately. �
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Lemma A.1. Under the conditions of Theorem 3, Q̂n =D
∑n

t=1 m̂
2
h(Xt)+

op(h
−p/2).

Lemma A.2. Under the conditions of Theorem 3,
∑n

t=1 m̂
2
h(Xt) = n×∫

m̂2
h(x)f(x)dx+ op(h

−p/2).

Proposition A.1. Under the conditions of Theorem 3, n
∫
m̂2

h(x)f(x)dx=

n
∫
m̃2

h(x)f(x)dx+ h−p/2E[δ2(Xt)] + op(h
−p/2).

Proposition A.2. Under the conditions of Theorem 3, and Hn(an) with
an = n−1/2h−p/4,

[
nhp/2

∫
m̃2

h(x)f(x)dx− h−p/2a(K)

∫
σ2(x)dx

]/√
2b(K)

∫
σ4(x)dx

d−→N(ψ,1).

Proof of Lemma A.1. Given in the supplementary material. �

Proof of Lemma A.2. Given in the supplementary material. �

Proof of Proposition A.1. Given in the supplementary material. �

Proof of Proposition A.2. Proposition A.2 follows from Lemmas A.3
and A.4 below. �

Lemma A.3. Put Ĥq = n−1
∑n

t=2

∑t−1
s=1Hn(Zt,Zs), where Zt = (εt,X

′
t)
′,

Hn(Zt,Zs) = 2εtεsWh(Xt,Xs), and

Wh(Xt,Xs) =

∫
Kh(Xt − x)Kh(Xs − x)

f(x)
dx.

Suppose Assumptions A.1 and A.4 hold, h∝ n−ω for ω ∈ (0,1/2p) and p < 4.
Then

n

∫
m̂2

h(x)g(x)dx= h−p

∫
K

2(u)du

∫
σ2(x)dx+ Ĥq + op(h

−p/2).

Lemma A.4. Suppose Assumptions A.1 and A.4 hold, and h ∝ n−ω

for ω ∈ (0,1/2p). Define Vq = 2
∫
[
∫
K(v)K(u+ v)dv]2 du

∫
σ4(x)dx. Then

V
−1/2
q × hp/2Ĥq

d−→N(ψ,1).

Since Lemmas A.3 and A.4 are the key results for deriving the asymptotic
distributions of the proposed qn statistic when {εt} may not be an i.i.d.
sequence nor martingale difference sequence, we provide detailed proofs for
them below.
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Proof of Lemma A.3. Let F̂n(x) be the empirical distribution func-
tion of {Xt}nt=1. We have

n

∫
m̃2

h(x)f(x)dx

= n

∫
[n−1

∑n
s=1 εsKh(Xt −Xs)]

2

f(x)
dx

+

∫ [
n−1

n∑

s=1

εsKh(Xt −Xs)

]2[
1

f̂2(x)
− 1

f2(x)

]
f(x)dx

= n−1
n∑

t=1

n∑

s=1

εtεs

∫
Kh(Xt − x)Kh(Xs − x)

f(x)
dx

(A.1)
+Op(n

−1h−p)Op(n
−1/2h−p/2 lnn+ h2)

= n−1
n∑

t=1

ε2t

∫
K

2
h(Xt − x)

f(x)
dx

+ n−1
n∑

1≤s≤t≤n

2εtεs

∫
Kh(Xt − x)Kh(Xs − x)

f(x)
+ op(h

−p/2)

= Ĉq + Ĥq + oP (h
−p/2),

where we have made use of the fact that supx∈G |f̂(x)− f(x)|=Op(n
−1/2 ×

h−p/2 lnn+ h2) given Assumption A.2, and h∝ n−ω for ω ∈ (0,1/2p).
By change of variable, the law of iterated expectations, and Assump-

tion A.1, we can obtain

E(Ĉq) =

∫ ∫
σ2(x)

K
2
h(y − x)

f(x)
f(y)dxdy

(A.2)

= h−p

∫
K

2(u)du

∫
σ2(x)dx[1 +O(h2)].

On the other hand, by Chebyshev’s inequality and the fact that E(Ĉq −
EĈq)

2 =Op(n
−1h−2p) given Assumption A.1, we have

Ĉq =E(Ĉq) +Op(n
−1/2h−p).(A.3)

Combining (A.1)–(A.3) and p < 4 then yields the desired result of Lemma A.3.
�

Proof of Lemma A.4. Because E[Hn(Zt, z)] = E[Hn(z
′,Zs)] = 0 for

all z, z′, Ĥq ≡ n−1
∑

1≤s<t≤nHn(Zt,Zs) is a degenerate U -statistic. Following
Tenreiro’s (1997) central limit theorem for degenerate U -statistics of a time
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series context process, we have [n−2
∑

1≤s<t≤nE[hpH2
n(Zt,Zs)]]

−1/2hp/2Ĥq
d→

N(0,1) as n→ ∞ if the following conditions are satisfied: For some con-
stants δ0 > 0, γ0 <

1
2 and γ1 > 0, (i) un(4 + δ0) = O(nγ0), (ii) vn(2) = o(1),

(iii) wn(2 +
δ0
2 ) = o(n1/2) and (iv) zn(2)n

γ1 =O(1), where

un(r) = hp/2max
{
max
1≤t≤n

‖Hn(Zt,Z0)‖r,‖Hn(Z0, Z̄0)‖r
}
,

vn(r) = hpmax
{
max
1≤t≤n

‖Gn0(Zt,Z0)‖r,‖Gn0(Z0, Z̄0)‖r
}
,

wn(r) = hp‖Gn0(Z0,Z0)‖r,
zn(r) = hp max

0≤t≤n,1≤s≤n
max{‖Gns(Zt,Z0)‖r,‖Gns(Z0,Zt)‖r,‖Gns(Z0, Z̄0)‖r},

Gns(u, v) =E[Hn(Zs, u)Hn(Z0, v)] for s ∈N and u, v ∈R
p, Z̄0 is an indepen-

dent copy of Z0, and ‖ξ‖r =E1/r|ξ|r.
We first show n−2

∑
1≤s<t≤n h

pE[H2
n(Zt,Zs)]→ Vq as n→∞. By change

of variables and Assumption A.1, it is straightforward to calculate

n−2
∑

1≤s<t≤n

hpE[H2
n(Zt,Zs)]

= 4hpn−2
∑

1≤s<t≤n

E[ε2t ε
2
sW

2
h (Xt,Xs)](A.4)

→ 2

∫ [∫
K(v)K(u+ v)dv

]2
du

∫
σ4(x)dx≡ Vq.

We now verify conditions (i)–(iv). We first consider condition (i). By the
Cauchy–Schwarz inequality and change of variables, we have for all t≥ 0,

E|hp/2Hn(Zt,Z0)|r = 2γh(p/2)rE|εrt εr0W r
h(Xt,X0)|

≤ 2γh(p/2)r(Eε2cr0 )1/c(E|Wh(Xt,X0)|cr)1/c

≤ Ch(p/2)r
[∫

|Wh(x,x0)|crfXt,X0(x,x0)dxdx0

]1/c

≤ Ch(p/2)r(h−pcrhp)1/c ≤Ch−(r/2)p+(p/c)

for all c > 1, and given E(ε8+δ
t ) ≤ C. We obtain ‖hp/2Hn(Zt,Z0)‖r =

(Ch−(r/2)p+(p/c))1/r ≤ Ch−p/2+p/(cr). Given h ∝ n−ω for ω ∈ (0,1/2p), we
have ‖hp/2Hn(Zt,Z0)‖r ≤Cnωp(1/2−2/(8+δ)), with c= 8+δ

2r and if r < 4+ δ
2 .By

a similar argument and replacing fXt,X0(x,x0) with f(x)f(x0), we can ob-

tain the same order of magnitude for ‖hp/2Hn(Z0, Z̄0)‖r . Hence, we obtain
un(r)≤Cnωp(1/2−2/(8+δ)), and condition (i) holds by setting γ0 = ωp(12 − 2

8+δ ).
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Now we verify condition (ii). Note that for all s≥ 0, we have

Gns(z, z
′) = E[Hn(Zs, z)Hn(Z0, z

′)]

= 4E[εtεWh(Xs, x)ε0ε
′Wh(X0, x

′)]

= 4ε · ε′E[εsε0Wh(Xs, x)Wh(X0, x
′)],

where z = (ε,x) and z′ = (ε′, x′). To compute the order of magnitude for
vn(r), we first consider the case of s= 0. We have

Gn0(z, z
′) = 4εε′E0[ε̄

2
0Wh(X̄0, x)Wh(X̄0, x

′)]

= 4εε′E0[σ
2(X̄0)Wh(X̄0, x)Wh(X̄0, x

′)],

where E0(·) is an expectation taken over (X̄0, ε̄0). By the Cauchy–Schwarz
inequality and change of variables, we have

E|hpGn0(Zt,Z0)|2

= 16E|h2pε2t ε20E2
0 [σ

2(X̄0)Wh(X̄0,Xt)Wh(X̄0,X0)]|

≤ 16h2pE|ε2t ε20[E0σ
2c(X̄0)]

2/c[E0W
c
h(X̄0,Xt)W

c
h(X̄0,X0)]

2/c|

≤ 16h2pC[E|ε4t ε40|]1/2{E|E0(W
c
h(X̄0,Xt)W

c
h(X̄0,X0))|4/c}1/2

≤Ch2p{E|h−2cp+p
Ac,h(Xt,X0)|4/c}1/2

=O(h2p[h(−2cp+p)(4/c)zhp]1/2) =O(h(2/c−3/2)p)

for any c > 1, where

E0[W
c
h(X̄0,Xt)W

c
h(X̄0,X0)] = h−2cp+p

∫
W c

h(x̄0,Xt)W
c
h(x̄0,X0)f(x̄0)dx̄0

= h−2cp+p
Ac,h(Xt,X0)

by change of variable, where Ac,h(Xt,X0) is a function similar to Kh(Xt −
X0). Thus, we obtain ‖hpGn0(Zt,Z0)‖2 ≤ Ch(1/c−3/4)p. By a similar argu-
ment, we obtain the same order of magnitude for ‖hpGn0(Zt, Z̄0)‖2. Thus,
we have vn(r)≤Ch(1/c−3/4)p, and condition (ii) holds, that is, vn(2) = o(1),
with 1< c < 4

3 .
Next, to verify condition (iii), we shall evaluate ‖hpGn0(Z0, Z̄0)‖r for r <

2+ δ0
4 . By the Cauchy–Schwarz inequality and change of variables, we have

E|hpGn0(Z0,Z0)|r = 4γE|hrpεr0εr0Er
0 [σ

2(X̄0)Wh(X̄0,X0)Wh(X̄0,X0)]|

≤ 4γh2pE|ε2r0 σ2c(X̄0)
r/c[E0W

2c
h (X̄0,X0)]

r/c|

≤ Chrp(Eε4r0 )1/2[E|E0W
2c
h (X̄0,X0)|2r/c]1/2

=O(hrp[h(1−2c)p·2r/c]1/2) =O(hrp(1/c−1)),
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where E0[W
2
h (X̄0,X0)] =

∫
W 2c

h (x̄0,X0)fX̄0
(x̄0)dx̄0 =O(h(1−2c)p) by change

of variable. Thus, we obtain ‖hpGn0(Z0,Z0)‖r ≤ Chp(1/c−1) = Cnωp(1−1/c)

given h ∝ n−ω. Thus condition (iii) holds by choosing c sufficiently small
subject to the constraint of c > 1.

Finally, we verify condition (iv). We first consider the case with t= 0 and
s 6= 0. We have, by the Cauchy–Schwarz inequality and change of variables,

E|hpGns(Z0,Z0)|2 = 16E|h2pε20ε20E2
0 [ε̄sε̄0Wh(X̄s,X0)Wh(X̄0,X0)]|

≤ 16h2pE|ε40(E0ε̄
c
sε̄

c
0)

2/c[E0W
c
h(X̄s,X0)W

c
h(X̄0,X0)]

2/c|

≤ 16h2p(E|ε0|8)1/2[E|E4/c
0 W c

h(X̄s,X0)W
c
h(X̄0,X0)|]1/2

=O(h2p[h2(1−c)p·(4/c)]1/2) =O(h2(2/c−1)p),

where E0[W
c
h(X̄s,X0)W

c
h(X̄0,X0)] =

∫
W c

h(x̄,X0)W
c
h(x̄0,X0)fX̄sX̄0

(x̄,

x̄0)dx̄ dx̄0 = O(h2(1−c)p) by change of variable. Thus, we have ‖hpGns(Z0,
Z0)‖2 ≤ [Ch2(2/c−1)p]1/2 = Ch(2/c−1)p, and so nγ1‖hpGns(Z0,Z0)‖2 =
n(1−2/c)ωp+γ1 if h=O(n−ω). Therefore, we obtain ‖hpGns(Z0,Z0)‖2 =O(n−γ1)
with γ1 = ( c2 − 1)ωp, if we choose c small enough for 1< c< 2. For the case
with t 6= 0 and s 6= 0, by a similar argument, we have ‖hpGns(Zt,Z0)‖2 ≤
[Ch2(2/c−1)p]1/2 = O(h(2/c−1)p). Thus, condition (iv) holds with γ1 = ( c2 −
1)ωp, provided we choose c small enough with 1 < c < 2. Since all condi-

tions (i)–(iv) hold, we have V
−1/2
q hp/2Ĥq

d−→ N(0,1) by Tenreiro’s (1997)
central limit theorem. �

Proof of Theorem 3(ii). We shall now derive the asymptotic distri-
bution of λn under Hn(an). From Lemmas A.5 and A.6 and Propositions A.3
and A.4 below, we have under Hn(an),

[
λn − h−pσ−2c(K)

∫
σ2(x)dx

]/√
2σ−4d(K)

∫
σ4(x)dx

d−→N(ξ,1).
�

Lemma A.5. Under the conditions of Theorem 3, λn = n
2
SSR0−SSR1

SSR1
+

op(h
−p/2) under Hn(an) with an = n−1/2h−p/4.

Lemma A.6. Under the conditions of Theorem 3, σ̂2n ≡ n−1 SSR1 = σ2+
Op(n

−1/2) under Hn(an) with an = n−1/2h−p/4.

Proposition A.3. Let S̃SR0 and S̃SR1 be defined in the same way as
SSR0 and SSR1, respectively, with {εt}nt=1 replacing {ε̂t}nt=1. Then under the

conditions of Theorem 3, SSR0−SSR1 = S̃SR0 − S̃SR1 + h−p/2E[δ2(Xt)] +
op(h

−p/2) under Hn(an) with an = n−1/2h−p/4.
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Proposition A.4. Under the conditions of Theorem 3 and Hn(an) with
an = n−1/2h−p/4,

[
S̃SR0 − S̃SR1

2σ2
− h−pσ−2c(K)

∫
σ2(x)dx

]/√
2σ−4d(K)

∫
σ4(x)dx

d−→N(ξ,1).

Proof of Lemma A.5. Given in the supplementary material. �

Proof of Lemma A.6. Given in the supplementary material. �

Proof of Proposition A.3. Given in the supplementary material. �

Proof of Proposition A.4. Proposition A.4 follows from Lemmas A.7
and A.8 below. �

Lemma A.7. Put Ĥλ = n−1
∑n

t=2

∑t−1
s=1Hn(Zt,Zs), where Zt = (εt,X

′
t)
′,

Hn(Zt,Zs) = εtεsWh(Xt,Xs) and

Wh(Xt,Xs) =

[
1

f(Xt)
+

1

f(Xs)

]
Kh(Xt−Xs)−

∫
Kh(Xt − x)Kh(Xs − x)

f(x)
dx.

Suppose Assumptions A.1 and A.4 hold, h∝ n−ω for ω ∈ (0,1/2p) and p < 4.
Then

S̃SR0 − S̃SR1 = h−p

[
2K(0)−

∫
K

2(u)du

]∫
σ2(x)dx+ Ĥλ + op(h

−p/2).

Lemma A.8. Suppose Assumptions A.1 and A.4 hold, and h∝ n−ω for
ω ∈ (0,1/2p). Define

Vλ = 2

∫ [
K(u)− 1

2

∫
K(v)K(u+ v)dv

]2
du

∫
σ4(x)dx.

Then V
−1/2
λ hp/2Ĥλ

d−→N(ξ,1).

Proof of Lemma A.7. Given in the supplementary material. �

Proof of Lemma A.8. Given in the supplementary material. �

Proof of Theorem 4. Pitman’s asymptotic relative efficiency of the
qn test over the λn test is the limit of the ratio of the sample sizes required
by the two tests to have the same asymptotic power at the same signifi-
cance level, under the same local alternative; see Pitman (1979), Chapter 7.
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Supposed n1 and n2 are the sample sizes required for the qn and λn tests,
respectively. Then Pitman’s asymptotic relative efficiency of qn to λn is de-
fined as

ARE(qn :λn) = lim
n1,n2→∞

n1
n2

(A.5)

under the condition that λn and qn have the same asymptotic power under

the same local alternatives n
−1/2
1 h

−p/4
1 δ1(x) ∼ n

1/2
2 h

−p/4
2 δ2(x) in the sense

that

lim
n1,n2→∞

n
−1/2
1 h

−p/4
1 δ1(x)

n
1/2
2 h

−p/4
2 δ2(x)

= 1.

Given hi = cn−ω
i , i = 1,2, we have n−2γ

1 E[δ21(Xt)] ∼ n−2γ
2 E[δ22(Xt)], where

γ = 2−ωp
4 . Hence,

lim
n1,n2→∞

(
n1
n2

)2γ

=
E[δ22(Xt)]

E[δ21(Xt)]
.(A.6)

On the other hand, from Theorem 3(ii), we have

γ(K)λn1 − µn1√
2µn1

d→N(ξ,1),

underHn1(an1) :g0(Xt) = g(Xt, θ0)+n
−1/2
1 h

−1/4
1 δ1(Xt), where ξ =E[δ21(Xt)]/

[2σ−2
√
2d(K)

∫
σ4(x)dx]. Also, from Theorem 3(i), we have

qn2 − νn2√
2νn2

d→N(ψ,1)

underHn2(an2) :g0(Xt) = g(Xt, θ0)+n
−1/2
2 h

−1/4
2 δ2(Xt), where ψ =E[δ22(Xt)]/

σ−2
√

2b(K)
∫
σ4(x)dx. To have the same asymptotic power, the noncentral-

ity parameters must be equal; namely ξ = ψ, or

E[δ21(Xt)]

2
√

2d(K)
∫
σ4(x)dx

=
E[δ22(Xt)]√

2b(K)
∫
σ4(x)dx

.(A.7)

Combining (A.5)–(A.7) yields

ARE(qn, λn) =

[
2
√
d(K)√
b(K)

]1/(2γ)
=

[
4d(K)

b(K)

]1/(4γ)

=

[∫
(2K(u)−

∫
K(u)K(u+ v)du)2 dv∫

(
∫
K(u)K(u+ v)du)2 dv

]1/(2−ωp)

.
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Finally, we show ARE(qn :λn) ≥ 1 for any positive kernels with K(·) ≤ 1.
For this purpose, it suffices to show

∫ [
2K(u)−

∫
K(u)K(u+ v)du

]2
dv ≥

∫ [∫
K(u)K(u+ v)du

]2
dv

or equivalently,
∫

K
2(v)dv ≥

∫ ∫
K(u)K(v)K(u+ v)dudv.

This last inequality follows from Zhang and Dette [(2004), Lemma 2]. This
completes the proof. �
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SUPPLEMENTARY MATERIAL

Supplementary material for a loss function approach to model specifi-
cation testing and its relative efficiency (DOI: 10.1214/13-AOS1099SUPP;
.pdf). In this supplement, we present the detailed proofs of Theorems 1–4
and report the simulation results with the bandwidth h= SXn

−1/5.
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